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Abstract

The band gaps in periodic structures are usually regarded as being induced by the Bragg resonances. Until the recent

years, the non-Bragg nature resonances were not taken into account in analysing and computing the band gaps, though it

can exist in all kinds of waveguides with periodic structures. Here, the resonance-induced band gaps in a periodic acoustic

duct are investigated extensively and a graphical method is introduced to analyse the dependence of these resonances on

the duct geometry. With this method, it becomes quite easy to estimate the frequency band gaps of the waveguide and

shape the band structures by choosing the proper geometric parameters. Our analysis show that the location and the width

of the band gap are closely related to the wavenumber and the amplitude of the wall corrugations, and the non-Bragg

resonance can result in the obvious band gap when the wall wavenumber is close to the cut-off frequency of the first mode.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Wave propagation in periodic structures and media has attracted a broad interest of the researches in
various branches of science for a long time, not only because of its fundamental importance in wave dynamics,
but also of its vast application in engineering and technology [1,2]. The acoustical periodic structures, also
known as phononic crystals, are bringing us more and more new concepts and methods, including the negative
refraction and superlenses [3–5], thermal management [6], and so on. The classic work on acoustic period
structures can be traced back as early as 1887 to Lord Rayleigh’s study on one-dimensional wave propagation
in a stretched string with periodically and continuously varying density. In that work, Rayleigh derived the
governing equation of second order with periodic coefficient, and solved it by Hill’s method [7]. Since the
seventies of the last century, the developments of mathematical and computational techniques have greatly
advanced the research on the periodic waveguides in acoustics and electromagnetics [8–22]. For instance, in
1974, Nayfeh [9] employed the method of multiple scales to find a uniform expansion near the sound
resonances in a two-dimensional acoustic duct with small wall corrugations. With this method, he avoided the
breaking down of the straightforward expansion, and showed that the resonance happened whenever the wall
wavenumber was equal to the difference of the wavenumbers of any two duct acoustic modes and each of these
two modes could not exit alone. Later, Bostrom [15] used the null-field method to find the stop-band structure
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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for the fundamental and the first modes in an axially symmetric hard-walled duct with a periodically varying
cross section. In the 1990s, Bradley [17] investigated the linear, dissipative, time-harmonic acoustic waves in
the periodic waveguide. In 2001, Wang [22] made a theoretical investigation on a periodically stubbed acoustic
waveguide with the transfer-matrix method and obtained the tunable complete spectral gaps.

However, it should be pointed out that almost all of these researchers have paid their attention to the
so-called Bragg resonance, and consequently, omitted the physical aspects in the sound frequency range far
from the Bragg resonances. In fact, in that frequency range, the coupling of the transverse standing waves can
result in the so-called non-Bragg resonance, which was predicted theoretically in our previous work [23].
Analogous resonant phenomenon in the planar electromagnetic waveguide was reported by Pogrebnyak
[24,25] before. Both Bragg and non-Bragg resonances in the acoustic waveguide are due to the interactions
between the sound modes and the structural periodicity of the waveguide, which can be interpreted by
the interferences of various wave modes in the waveguide and occur at the crossings of the different modes in
the Brillouin zone. These resonances give rise to the generation of some new propagating modes and the
formation of the so-called forbidden bands which can be found in such diverse areas as acoustics [26,27],
optical superlattices [28], and the solid state physics [29,30]. Physically, band structures can result not only
from the Bragg resonances but also from the non-Bragg resonances. However, one usually missed the physics
due to non-Bragg resonance, especially in the numerical studies of band structures, and thus, he could not
figure out the accurate relationship between the band structures and the waveguide parameters.

Moreover, ignoring the detailed spectral structures, we will miss more interesting applications. The band-
gap engineering has already offered us some novel optical and electronic devices. Analogously, the analysis of
acoustical band structures will help with the applications such as acoustic filters, noise control, and the
improvements in the design of transducers. In 1996, Kushwaha computed the band structure of two-
dimensional periodic arrays of rigid stainless steel cylinders in air and proposed the fabrication of a
multiperiodic system in tandem that could create a huge hole in sound within the human audible range of
frequencies [2]. In 2001, Lai proposed a simple, systematic, and efficient method to engineer acoustic band
gaps and suggested the ‘‘designable’’ acoustic band gap for two-dimensional sonic crystals [31]. Rim [32],
Auregan [33], Selamet [34,35], and many other authors have paid their attention to the noise control in the
acoustic ducts for various applications. Some of them eliminated the noise by the resonance silencers, which
prevent some sound wave elements from being transmitted through the ducts. Undoubtedly, the extensive
analysis of the resonance-induced band gaps will benefit the design of it.

This paper is devoted to the Bragg and non-Bragg resonance-induced band gaps in the cylindrical acoustic
duct with a periodically varying cross section. In the following section, the eigenvalue problem for the acoustic
waves in the cylindrical duct is mentioned briefly and the generalized resonance conditions are derived.
Section 3 introduces a graphical method to analyse the resonances and the frequency band structure (FBS) in
the periodic waveguide. The numerical examples in Section 4 will confirm the analysis. The dispersion curves
and band structures are given in the case of different duct parameters. And also, the attenuation properties are
simulated with the finite element method. Section 5 summarizes the main results of the paper with a brief
discussion.

2. Formulations

The theoretical formulation is summarized here in dimensionless form. For more details, reference should
be made to our previous letter [23]. Assuming the harmonic wave motion in time, we obtain the dimensionless
Helmholtz equation for the velocity potential c,

r2cþ o2c ¼ 0 (1)

and the rigid boundary condition

q
qn

c ¼ 0 on r ¼ 1þ e cosðkzÞ, (2)

where o is the frequency, r the radius of the duct wall, e a small parameter measuring the fluctuation of the
wall, n the outward unit vector normal to the wall and 2p=k the spacial period of the wall corrugations.
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According to the Floquet’s theorem, the velocity potential c can be expanded in spatially harmonic series

c ¼
X1

n¼�1

AnJ0ðkr;nrÞeikz;nz, (3)

where J0ð�Þ is the zero-order Bessel function, kz;n ¼ bþ nk is the longitudinal wavenumber of the nth space
harmonic, bð�k=2pbpk=2Þ is the reference propagation constant and kr;n is the transverse wavenumber. Also
the dispersion relation,

o2 ¼ k2
r;n þ k2

z;n (4)

holds.
Substituting series (3) into the boundary condition (2) yields a system of linear algebraic equations for

coefficients An, and then, whose determinant vanishes, i.e.

det kCðkr;n;b; e; kÞk ¼ 0, (5)

where C ¼ fCmng is an m� n matrix [23].
For a fixed frequency o, the relation between the transverse wavenumbers of the nth and the n0th harmonics

can be derived from the dispersion relation (4):

kr;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

r;n0 þ 2ðn0 � nÞkbþ ðn02 � n2Þk2
q

. (6)

The resonance between the nth and n0th harmonics appears at

bpq ¼ �
ðnþ n0Þk

2
ð1þ ZpqÞ; Zpq ¼

kðqÞr

2
� kðpÞr

2

ðn2 � n02Þk2
, (7)

where kðpÞr is the zeros of the first-order Bessel function, i.e. fkðpÞr ; p ¼ 0; 1; 2; . . .g ¼ f0; 3:8317; 7:0156; . . .g. The
Bragg resonance appears as usual at b ¼ �ðnþ n0Þk=2 when p ¼ q, i.e., when both nth and n0th harmonics
have the same transverse mode or radial distributions. Otherwise ðpaqÞ, the so-called non-Bragg resonance
happens. Clearly it is a generalization of the Bragg resonance to the situations where different modes of non-
propagated transverse standing waves are involved, even though the non-propagated waves do not couple
with the periodic structures. The frequency of the generalized resonance between the pth mode of the nth
harmonic and the qth mode of the n0th harmonic can be formulated as

opq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðpÞr

2
þ ðnk þ bpqÞ

2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðqÞr

2
þ ðn0k þ bpqÞ

2

q
. (8)

Near the resonance, Eq. (5) reduces to

kr;n0J1ðkr;n0 Þkr;nJ1ðkr;nÞ ¼ e2jn�n0 j J
�
nn0 ðkr;n0 ÞJ

þ
nn0 ðkr;nÞ

4
þOðe3jn�n0jÞ, (9)

where

J�nn0 ðkr;nÞ ¼ kðjn�n0 jþ1Þ
r;n J

ðjn�n0 jþ1Þ
0 ðkr;nÞ � ðn� n0Þkkz;nkðjn�n0 j�1Þ

r;n J
ðjn�n0 j�1Þ
0 ðkr;nÞ. (10)

In the above expression, J1ð�Þ is the first-order Bessel function and J
ðmÞ
0 ð�Þ denotes the mth order derivative of

J0ð�Þ with respective to the argument.
For small e, we have the expansion,

kr;0 ¼ kðpÞr � dkpqejn�n0 j (11)
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in terms of e, with

dkpq ¼

1

2kðpÞr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþnn0 ðk

ðpÞ
r ÞJ

�
nn0 ðk

ðqÞ
r Þ

2J
ð1Þ
1 ðk

ðpÞ
r ÞJ

ð1Þ
1 ðk

ðqÞ
r Þ

s
; q ¼ 0;

1

2kðpÞr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþnn0 ðk

ðpÞ
r ÞJ

�
nn0 ðk

ðqÞ
r Þ

J
ð1Þ
1 ðk

ðpÞ
r ÞJ

ð1Þ
1 ðk

ðqÞ
r Þ

s
; q40:

8>>>>><
>>>>>:

(12)

Then, the frequency spectrum splits:

o�pq ¼ opq �
oðpÞ

opq

dkpqejn�n0 j. (13)

The resonance leads to the frequency shift and the generation of an additional mode o�pq located away from
the shifted frequency by

Dopq ¼ 2
oðpÞ

opq

dkpqejn�n0 j. (14)

It is found that near the resonances, the spectral gap is proportional to ejn�n0 j. When jn� n0j ¼ 1, i.e., the
resonance happens between two nearest spatial harmonics, the biggest splitting proportional to e is obtained.
This is the case considered in our previous letter [23].

3. Graphical method

To investigate the resonances and the relationship between the band gap and the wall periodicity of the
waveguide, we introduce a graphical method in Fig. 1 according to the first equality in Eq. (8). The line
marked by lðp; nÞ in the figure denotes the pth mode of the nth harmonic. Also some special points
are indicated. They are the cut-off frequencies of the first- and the second-mode Að0; kð1Þr Þ, Bð0; kð2Þr Þ and the
intersections M0ð0; kÞ, M�1ð�k=2; k=2Þ, M1ðk=2; k=2Þ.

For the low-frequency sound waves (ook=2), the solution to the wave equation is the linear combination of
the right- and left-travelling waves. In the figure, the line lð0; 0Þ stands for the two travelling waves. With the
time harmonic e�iot, it stands for the right-travelling wave (RTW) when b40 and for the left one when bo0.
Because the wavelength is much greater than the period of the waveguide, the wall corrugations have no effect
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Fig. 1. The duct modes in the first Brillouin zone for k ¼ 2p.
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on the sound propagation, and the travelling is essentially the same as that in the straight duct. When the
sound frequency o is equal or close to k=2, i.e., under the Bragg reflection condition, the strongly reflected
waves appear and interfere with the right- and left-travelling waves, respectively. At the point M1, the RTW
interferes with the left-going reflected wave, resulting in the evanescent longitudinal standing wave.
Analogously, at the point M�1, the left travelling wave (LTW) interferes with the right-going reflected wave.
In both cases, there is only the evanescent longitudinal standing wave left, and the wave energy attenuates very
fast along the longitudinal direction. That is to say, the interferences give rise to the formation of the band
gaps. When the frequency is away from k=2, the resonance condition is not satisfied any more. The right- and
lefttravelling waves appear again, indicated by the line lð0; 1Þ and lð0;�1Þ, respectively. When the frequency
increases, more and more transverse modes will be involved. The cut-off frequencies of the first mode kð1Þr and
the second kð2Þr are shown in Fig. 1 by points A and B, respectively. When the frequency gets a little larger than
kð1Þr , i.e., the frequency is near to the intersection of the lines lð1; 0Þ and lð0; 1Þ or lð0;�1Þ, the non-Bragg nature
resonance occurs. For bo0, the RTW of the fundamental mode interferes with the LTW of the first mode, and
for b40, the LTW of the fundamental mode interferes with the RTW of the first mode. The constructive
interferences lead to the frequency spectrum splitting, and the possibility of the band gap creation.
Analogously, all the intersections in Fig. 1 stand for the resonances, which will result in the possible
band gaps.

In the figure, the points M0, M�1 and M1 depend on k, but the points A and B do not. When k gets small,
the points M0, M1 and M�1 move down. There will be no cut-off frequency in the parallelogram OM1M0M�1

when kokð1Þr . For even smaller k, there will be more parallelograms under point A. When k5kð1Þr , only the
high-order spatial harmonics of the fundamental mode can intersect with the line lð1; 0Þ. Therefore, the non-
Bragg resonances are too small to be observed and only the Bragg resonances dominate the bandgap
formation. Fig. 2 shows the duct modes for k ¼ p=4. The point M0 is far away from the first-mode cut-off
frequency and the Bragg resonances happen at the intersections in the figure. When k42:709, the non-Bragg
resonances happen and result in the complete band gaps [23]. When k gets large, the points M0, M1 and M�1

move up and more and more cut-off frequencies of the high-order modes go into the parallelogram
OM1M0M�1. The intersections of lines lð0;�1Þ and lðp; 0Þ move to the line b ¼ �k=2, and the Bragg and non-
Bragg resonances have effect on each other. Fig. 3 shows the duct modes for k ¼ 3p. Points A and B go into
the parallelogram, and the non-Bragg nature resonances at the intersections between lð1; 0Þ and lð0;�1Þ are
moving to the line b ¼ �k=2. When k gets even larger, the intersections between lines lð1; 0Þ and lð0;�1Þ move
up continuously. Although there is more spectrum splitting, the complete band gap can hardly be found
because of the fixed points A, B, and so on.
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Fig. 2. The duct modes in the first Brillouin zone for k ¼ p=4.
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Fig. 3. The duct modes in the first Brillouin zone for k ¼ 3p.
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With the introduced graphical method, we can investigate how the resonances in the duct depend on the
wall period. Thus, we can approximately estimate the FBS of a periodic waveguide. On the other hand, when a
specific FBS is required in the application, we can design the geometric parameters of the waveguide with the
help of the method. It is also possible to connect the different waveguides to broaden the band gaps in
applications.

4. Numerical simulations

In the previous two sections, we have shown how the FBS in a periodic duct depend on the amplitude and
the wavenumber of the wall corrugations, respectively. We also have demonstrated the power of the graphical
method in facilitating the estimation and the designation of the waveguide qualitatively. For better
understanding the relationship between the FBS and the wall parameters, numerical computation is given
below to simulate the dispersion curves and the attenuation properties of the waveguide.

4.1. Dispersion curves

The dispersion curves can be calculated numerically based on Eq. (2). To achieve the goal, the infinite
matrix in Eq. (5) must be truncated. The truncation depends on the order of the spatial harmonic considered.
Generally, the 9� 9 matrix ð�4pm; np4Þ gives the adequate approximation to the infinite system. The
numerical results are shown in Figs. 4–6 for the first Brillouin zone, in comparison with the analytical ones in
Figs. 1–3, respectively.

For k ¼ 2p; e ¼ 0:1, Fig. 4 shows that the Bragg resonances occur near the line o ¼ p; 2p. The resonances
near the line o ¼ p can turn to the obvious band gap and those near the line o ¼ 2p have effect on the
non-Bragg resonances. Also the non-Bragg resonances near the line o ¼ 4 result in the complete band gap.
Fig. 5 exhibits only the Bragg resonances because of the very small k. As we can see, the first-order
Bragg resonance causes the widest band gap; the higher-order Bragg resonance, the narrower the band gap. In
Fig. 6, not only the first and fundamental modes but also the second mode are included because of
the frequency spectrum shifting with the larger e [23]. The shifting also results in the superposition of the
dispersive curves. So we can only find the non-Bragg band gap caused by the second-mode near the line
o ¼ 6:5, not by the first-mode. For very large k, Fig. 7 shows more modes involved, but no visible complete
band gap.
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Fig. 4. The dispersion curves in the first Brillouin zone for k ¼ 2p; e ¼ 0:1.
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Fig. 5. The dispersion curves in the first Brillouin zone for k ¼ p=4; e ¼ 0:5.
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4.2. Attenuation properties

With the finite element method, the attenuation properties of the waveguide with 20 periods are investigated
and the results confirm the previous analysis. We take the plane wave as the incident wave of the sound power
pin at one end and calculate the output power pout at the other end of the waveguide. Defining the power
attenuation as

p ¼ 10 log10
pout

pin

(15)

we obtain the attenuation properties as shown in Figs. 8–11. All the attenuations in the figures correspond to
the resonances predicted above. With the help of the graphical method or the dispersion curves described
above, we can easily recognize the Bragg or the non-Bragg resonances in these figures. For example, the band
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Fig. 6. The dispersion curves in the first Brillouin zone for k ¼ 3p; e ¼ 0:2.
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Fig. 7. The dispersion curves in the first Brillouin zone for k ¼ 6p; e ¼ 0:1.
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gap near the line o ¼ 4 in Fig. 8 and that near the line o ¼ 6:5 in Fig. 10 are the obvious non-Bragg
induced ones. Fig. 11 shows no band gap in the frequency range considered, in agreement with the prediction
in Fig. 7.

5. Discussion and conclusion

In this paper, the FBS of the acoustic cylindrical duct with sinusoidally corrugated wall is investigated. Not
only the Bragg resonance but also the non-Bragg resonance appear to result in the gaps. The non-Bragg
resonance is caused by the interaction between the transverse standing wave modes, while the well-known
Bragg resonance is due to the interaction of the longitudinal wave modes. Because of the non-Bragg
resonance, some new forbidden bands appear in addition to those due to the Bragg resonance. In other words,
the non-Bragg resonance becomes important for k large enough to introduce the high-order modes. Both the
Bragg and non-Bragg resonance conditions are formulated in a unified way, and the spectrum splits are
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Fig. 8. The power attenuation at the end of the waveguide for k ¼ 2p; e ¼ 0:1.
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Fig. 9. The power attenuation at the end of the waveguide for k ¼ p=4; e ¼ 0:5.
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predicted theoretically. The qualitative and quantitative analysis are performed to enrich our knowledge on
periodic waveguides. The main results can be summarized as
(1)
 When k5kð1Þr , only the Bragg nature resonances are involved, and the band gaps appear near
o ¼ jðnþ n0Þk=2j.
(2)
 When kð1Þr =k ¼ Oð1Þ, the non-Bragg nature resonances caused by the first-order mode, can result in the
obvious band gaps.
(3)
 When kbkð1Þr , more and more transverse modes are involved, and no complete band gap can be found.
The theoretical and numerical results show that the resonance between two nearest spatial harmonics leads
to the widest spectrum stop band. The resonance-induced band structures are found to depend highly on the
wall parameters, i.e., the location and width of the band gap is closely related to the wall wavenumber and
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Fig. 10. The power attenuation at the end of the waveguide for k ¼ 3p; e ¼ 0:2.
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Fig. 11. The power attenuation at the end of the waveguide for k ¼ 6p; e ¼ 0:1.
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amplitude. The proposed graphical method greatly help us to analyse the band structure of the duct
qualitatively. It also makes it possible to design some special band structures with the compound waveguides
consisting of different wall periods. We believe that the present work might provide a clearer picture of physics
of sound wave interactions and propagation in periodic waveguide. Further theoretical and experimental
researches with regard to the ‘‘band-gap design’’ are still underway.
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